If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2+x^2=24^2
We move all terms to the left:
10^2+x^2-(24^2)=0
We add all the numbers together, and all the variables
x^2-476=0
a = 1; b = 0; c = -476;
Δ = b2-4ac
Δ = 02-4·1·(-476)
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{119}}{2*1}=\frac{0-4\sqrt{119}}{2} =-\frac{4\sqrt{119}}{2} =-2\sqrt{119} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{119}}{2*1}=\frac{0+4\sqrt{119}}{2} =\frac{4\sqrt{119}}{2} =2\sqrt{119} $
| 18=-5g+53 | | (n=5)4n-3 | | 34/476=2x | | 7p-5=-271 | | 2/3(n+1)=-8 | | 1/b+1/b^2=5b-6/7b^2 | | 10x-53=-13x+46 | | 1/8d-4+2/8d-4=5 | | 86.67=32.1h | | c=3.14*26.3 | | 3/2+2=x/4+7 | | 60=g+40 | | K+2/3=k-4/5 | | 12p+5p+28=360 | | 3(2x+9)=-41+38 | | 7R+9-6j=8R | | (‑(16*x^2))+50*x=-4 | | 3x+7=20.5 | | 11.5+2x=20.5 | | x+(2x-30)+(2x+10)=180 | | 7c-6(-7+6c)=-7+252 | | (‑(16*x^2))+50*x+4=0 | | 4t+12=32 | | 3+1.25x=5+1x | | 9B+3=5x+10 | | G(0)=2x+2 | | 2a+(5-1)=38) | | 2x-6=4x+38 | | 5=-2t+15 | | 66.10=66.1t | | D=66.1t | | -8×+13=-5(2x+3)+2x |